Orbital stability of ground states for a Sobolev critical Schrödinger equation
نویسندگان
چکیده
We study the existence of ground state standing waves, prescribed mass, for nonlinear Schrödinger equation with mixed power nonlinearitiesi?tv+?v+?v|v|q?2+v|v|2??2=0,(t,x)?R×RN, where N?3, v:R×RN?C, ?>0, 2<q<2+4/N and 2?=2N/(N?2) is critical Sobolev exponent. show that all states correspond to local minima associated Energy functional. Next, despite fact nonlinearity critical, we set orbitally stable. Our results settle a question raised by N. Soave [35]. Nous étudions l'existence d'une onde stationnaire correspondante à un état fondamental de masse prescrite pour une équation non linéaire la formei?tv+?v+?v|v|q?2+v|v|2??2=0,(t,x)?R×RN, où et est l'exposant critique Sobolev. montrons que tous les états fondamentaux sont des locaux fonctionnelle d'énergie associée au problème. Ensuite, malgré le fait linéarité soit l'injection Sobolev, nous l'ensemble orbitalement Nos résultats répondent soulevée par
منابع مشابه
The Fourth-Order Dispersive Nonlinear Schrödinger Equation: Orbital Stability of a Standing Wave
Considered in this report is the one-dimensional fourth-order dispersive cubic nonlinear Schrödinger equation with mixed dispersion. Orbital stability, in the energy space, of a particular standing-wave solution is proved in the context of Hamiltonian systems. The main result is established by constructing a suitable Lyapunov function.
متن کاملApproximate Solutions of the Nonlinear Schrödinger Equation for Ground and Excited States of Bose-Einstein Condensates
I present simple analytical methods for computing the properties of ground and excited states of Bose-Einstein condensates, and compare their results to extensive numerical simulations. I consider the effect of vortices in the condensate for both positive and negative scattering lengths, a, and find an analytical expression for the large-N0 limit of the vortex critical frequency for a > 0, by a...
متن کاملGround States for the Fractional Schrödinger Equation
In this article, we show the existence of ground state solutions for the nonlinear Schrödinger equation with fractional Laplacian (−∆)u+ V (x)u = λ|u|u in R for α ∈ (0, 1). We use the concentration compactness principle in fractional Sobolev spaces Hα for α ∈ (0, 1). Our results generalize the corresponding results in the case α = 1.
متن کاملNumerical solution for one-dimensional independent of time Schrödinger Equation
In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2022
ISSN: ['0021-7824', '1776-3371']
DOI: https://doi.org/10.1016/j.matpur.2022.06.005